Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25.965
Filtrar
1.
Fluids Barriers CNS ; 21(1): 32, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38584257

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), which is associated with various neurological symptoms, including nausea, dizziness, headache, encephalitis, and epileptic seizures. SARS-CoV-2 is considered to affect the central nervous system (CNS) by interacting with the blood-brain barrier (BBB), which is defined by tight junctions that seal paracellular gaps between brain microvascular endothelial cells (BMECs). Although SARS-CoV-2 infection of BMECs has been reported, the detailed mechanism has not been fully elucidated. METHODS: Using the original strain of SARS-CoV-2, the infection in BMECs was confirmed by a detection of intracellular RNA copy number and localization of viral particles. BMEC functions were evaluated by measuring transendothelial electrical resistance (TEER), which evaluates the integrity of tight junction dynamics, and expression levels of proinflammatory genes. BMEC signaling pathway was examined by comprehensive RNA-seq analysis. RESULTS: We observed that iPSC derived brain microvascular endothelial like cells (iPSC-BMELCs) were infected with SARS-CoV-2. SARS-CoV-2 infection resulted in decreased TEER. In addition, SARS-CoV-2 infection decreased expression levels of tight junction markers CLDN3 and CLDN11. SARS-CoV-2 infection also increased expression levels of proinflammatory genes, which are known to be elevated in patients with COVID-19. Furthermore, RNA-seq analysis revealed that SARS-CoV-2 dysregulated the canonical Wnt signaling pathway in iPSC-BMELCs. Modulation of the Wnt signaling by CHIR99021 partially inhibited the infection and the subsequent inflammatory responses. CONCLUSION: These findings suggest that SARS-CoV-2 infection causes BBB dysfunction via Wnt signaling. Thus, iPSC-BMELCs are a useful in vitro model for elucidating COVID-19 neuropathology and drug development.


Assuntos
COVID-19 , Células-Tronco Pluripotentes Induzidas , Humanos , SARS-CoV-2 , Via de Sinalização Wnt , Células Endoteliais/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Encéfalo/irrigação sanguínea , Barreira Hematoencefálica/metabolismo
2.
J R Soc Interface ; 21(213): 20230659, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38565158

RESUMO

The flow of cerebrospinal fluid (CSF) along perivascular spaces (PVSs) is an important part of the brain's system for clearing metabolic waste. Astrocyte endfeet bound the PVSs of penetrating arteries, separating them from brain extracellular space. Gaps between astrocyte endfeet might provide a low-resistance pathway for fluid transport across the wall. Recent studies suggest that the astrocyte endfeet function as valves that rectify the CSF flow, producing the net flow observed in pial PVSs by changing the size of the gaps in response to pressure changes. In this study, we quantify this rectification based on three features of the PVSs: the quasi-circular geometry, the deformable endfoot wall, and the pressure oscillation inside. We provide an analytical model, based on the thin-shell hoop-stress approximation, and predict a pumping efficiency of about 0.4, which would contribute significantly to the observed flow. When we add the flow resistance of the extracellular space (ECS) to the model, we find an increased net flow during sleep, due to the known increase in ECS porosity (decreased flow resistance) compared to that in the awake state. We corroborate our analytical model with three-dimensional fluid-solid interaction simulations.


Assuntos
Sistema Glinfático , Sistema Glinfático/fisiologia , Encéfalo/irrigação sanguínea , Artérias/fisiologia , Pressão , Transporte Biológico , Líquido Cefalorraquidiano/metabolismo
3.
PLoS One ; 19(4): e0296357, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578749

RESUMO

OBJECTIVE: Quantitative values derived from PET brain images are of high interest for neuroscientific applications. Insufficient DT correction (DTC) can lead to a systematic bias of the output parameters obtained by a detailed analysis of the time activity curves (TACs). The DTC method currently used for the Siemens 3T MR BrainPET insert is global, i.e., differences in DT losses between detector blocks are not considered, leading to inaccurate DTC and, consequently, to inaccurate measurements masked by a bias. However, following careful evaluation with phantom measurements, a new block-pairwise DTC method has demonstrated a higher degree of accuracy compared to the global DTC method. APPROACH: Differences between the global and the block-pairwise DTC method were studied in this work by applying several radioactive tracers. We evaluated the impact on [11C]ABP688, O-(2-[18F]fluoroethyl)-L-tyrosine (FET), and [15O]H2O TACs. RESULTS: For [11C]ABP688, a relevant bias of between -0.0034 and -0.0053 ml/ (cm3 • min) was found in all studied brain regions for the volume of distribution (VT) when using the current global DTC method. For [18F]FET-PET, differences of up to 10% were observed in the tumor-to-brain ratio (TBRmax), these differences depend on the radial distance of the maximum from the PET isocenter. For [15O]H2O, differences between +4% and -7% were observed in the GM region. Average biases of -4.58%, -3.2%, and -1.2% for the regional cerebral blood flow (CBF (K1)), the rate constant k2, and the volume of distribution VT were observed, respectively. Conversely, in the white matter region, average biases of -4.9%, -7.0%, and 3.8% were observed for CBF (K1), k2, and VT, respectively. CONCLUSION: The bias introduced by the global DTC method leads to an overestimation in the studied quantitative parameters for all applications compared to the block-pairwise method. SIGNIFICANCE: The observed differences between the two DTC methods are particularly relevant for research applications in neuroscientific studies as they affect the accuracy of quantitative Brain PET images.


Assuntos
Encéfalo , Oximas , Tomografia por Emissão de Pósitrons , Piridinas , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/irrigação sanguínea , Imagens de Fantasmas , Cabeça , Imageamento por Ressonância Magnética
4.
Nature ; 628(8009): 863-871, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570687

RESUMO

Vertebrate organs require locally adapted blood vessels1,2. The gain of such organotypic vessel specializations is often deemed to be molecularly unrelated to the process of organ vascularization. Here, opposing this model, we reveal a molecular mechanism for brain-specific angiogenesis that operates under the control of Wnt7a/b ligands-well-known blood-brain barrier maturation signals3-5. The control mechanism relies on Wnt7a/b-dependent expression of Mmp25, which we find is enriched in brain endothelial cells. CRISPR-Cas9 mutagenesis in zebrafish reveals that this poorly characterized glycosylphosphatidylinositol-anchored matrix metalloproteinase is selectively required in endothelial tip cells to enable their initial migration across the pial basement membrane lining the brain surface. Mechanistically, Mmp25 confers brain invasive competence by cleaving meningeal fibroblast-derived collagen IV α5/6 chains within a short non-collagenous region of the central helical part of the heterotrimer. After genetic interference with the pial basement membrane composition, the Wnt-ß-catenin-dependent organotypic control of brain angiogenesis is lost, resulting in properly patterned, yet blood-brain-barrier-defective cerebrovasculatures. We reveal an organ-specific angiogenesis mechanism, shed light on tip cell mechanistic angiodiversity and thereby illustrate how organs, by imposing local constraints on angiogenic tip cells, can select vessels matching their distinctive physiological requirements.


Assuntos
Membrana Basal , Barreira Hematoencefálica , Encéfalo , Colágeno Tipo IV , Células Endoteliais , Neovascularização Fisiológica , Peixe-Zebra , Animais , Encéfalo/citologia , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/citologia , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Membrana Basal/metabolismo , Colágeno Tipo IV/metabolismo , Proteínas Wnt/metabolismo , Sistemas CRISPR-Cas/genética , Humanos , Especificidade de Órgãos , Via de Sinalização Wnt , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Movimento Celular , Meninges/citologia , Meninges/irrigação sanguínea , Meninges/metabolismo
5.
Curr Med Imaging ; 20: e15734056219963, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660947

RESUMO

BACKGROUND: A contrast agent-free approach would be preferable to the frequently used invasive approaches for evaluating cerebral perfusion in chronic migraineurs (CM). In this work, non-invasive quantitative volumetric perfusion imaging was used to evaluate alterations in cerebral perfusion in CM. METHODS: We used conventional brain structural imaging sequences and 3D pseudo-continuous arterial spin labeling (3D PCASL) to examine thirteen CM patients and fifteen normal controls (NCs). The entire brain gray matter underwent voxel-based analysis, and the cerebral blood flow (CBF) values of the altered positive areas were retrieved to look into the clinical variables' significant correlation. RESULTS: Brain regions with the decreased perfusion were located in the left postcentral gyrus, bilateral middle frontal gyrus, left middle occipital gyrus, left superior parietal lobule, left medial segment of superior frontal gyrus, and right orbital part of the inferior frontal gyrus. White matter fibers with decreased perfusion were located in bilateral superior longitudinal tracts, superior corona radiata, external capsules, anterior and posterior limbs of the internal capsule, anterior corona radiata, inferior longitudinal fasciculus, and right corticospinal tract. However, the correlation analysis showed no significant correlation between the CBF value of the above positive brain regions with clinical variables (p > 0.05). CONCLUSION: The current study provided more useful information to comprehend the pathophysiology of CM and revealed a new insight into the neural mechanism of CM from the pattern of cerebral hypoperfusion.


Assuntos
Circulação Cerebrovascular , Transtornos de Enxaqueca , Marcadores de Spin , Humanos , Circulação Cerebrovascular/fisiologia , Transtornos de Enxaqueca/diagnóstico por imagem , Transtornos de Enxaqueca/fisiopatologia , Feminino , Adulto , Masculino , Imageamento Tridimensional/métodos , Doença Crônica , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/irrigação sanguínea , Encéfalo/fisiopatologia , Estudos de Casos e Controles , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/irrigação sanguínea
6.
Physiol Meas ; 45(4)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38569522

RESUMO

Objective. The continuous delivery of oxygen is critical to sustain brain function, and therefore, measuring brain oxygen consumption can provide vital physiological insight. In this work, we examine the impact of calibration and cerebral blood flow (CBF) measurements on the computation of the relative changes in the cerebral metabolic rate of oxygen consumption (rCMRO2) from hemoglobin-sensitive intrinsic optical imaging data. Using these data, we calculate rCMRO2, and calibrate the model using an isometabolic stimulus.Approach. We used awake head-fixed rodents to obtain hemoglobin-sensitive optical imaging data to test different calibrated and uncalibrated rCMRO2models. Hypercapnia was used for calibration and whisker stimulation was used to test the impact of calibration.Main results. We found that typical uncalibrated models can provide reasonable estimates of rCMRO2with differences as small as 7%-9% compared to their calibrated models. However, calibrated models showed lower variability and less dependence on baseline hemoglobin concentrations. Lastly, we found that supplying the model with measurements of CBF significantly reduced error and variability in rCMRO2change calculations.Significance. The effect of calibration on rCMRO2calculations remains understudied, and we systematically evaluated different rCMRO2calculation scenarios that consider including different measurement combinations. This study provides a quantitative comparison of these scenarios to evaluate trade-offs that can be vital to the design of blood oxygenation sensitive imaging experiments for rCMRO2calculation.


Assuntos
Encéfalo , Imagem Óptica , Consumo de Oxigênio , Oxigênio , Vigília , Animais , Calibragem , Camundongos , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/irrigação sanguínea , Oxigênio/metabolismo , Vigília/fisiologia , Consumo de Oxigênio/fisiologia , Circulação Cerebrovascular/fisiologia , Hemoglobinas/metabolismo , Hemoglobinas/análise , Masculino , Camundongos Endogâmicos C57BL , Hipercapnia/metabolismo , Hipercapnia/diagnóstico por imagem
7.
Sci Rep ; 14(1): 6060, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480803

RESUMO

The cerebral arteries, specifically the anterior cerebral artery (ACA) and posterior cerebral artery (PCA), work together with the smaller calibre arteries to provide effective communication between the anterior and posterior circuits of the brain via the circle of Willis (CoW). Morphologic variations of the cerebral arteries and the CoW may alter blood flow to the brain, resulting in intracranial vascular disorders associated with stroke, and aneurysms. This study aimed to document the morphology of the cerebral arteries and the CoW in the South African population. Two hundred and thirty-nine computed tomography angiography scans were assessed. Cerebral arteries and CoW normal morphology and variations were classified as complete, absent, or hypoplastic. The ACA A1 was absent in 4.91%, hypoplastic in 30.40%, fenestrated in 1.06%, and typical in 63.6%. The ACA A2 was absent in 0.42%, hypoplastic in 26.28%, and typical in 69.44%. We found triple ACA A2 in 2.98%, azygos in 1.28% and fenestrated in 1.28%. The middle cerebral artery (MCA) was hypoplastic in 7.35% and typical in 92.64%. The PCA was hypoplastic in 28.74% and typical in 71.25%. Knowledge of the configuration of the CoW plays a significant role in guiding therapeutic decision-making in treating various neurovascular pathologies.


Assuntos
Encéfalo , Artérias Cerebrais , Humanos , África do Sul , Artérias Cerebrais/diagnóstico por imagem , Artérias Cerebrais/anatomia & histologia , Encéfalo/irrigação sanguínea , Círculo Arterial do Cérebro/diagnóstico por imagem , Artéria Cerebral Média , Angiografia Cerebral
8.
Sci Rep ; 14(1): 7252, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538633

RESUMO

Cerebrovascular Reactivity (CVR) refers to the ability of cerebral blood vessels to dilate or constrict under the effect of vasoactive substances and can be estimated using functional Magnetic Resonance Imaging (fMRI). Computation of CVR maps is relevant in various brain diseases and requires specialized data processing. We introduce CVRmap, an opensource software that automates the computation of CVR map. The toolbox complies with the Brain Imaging Data Structure (BIDS) standards.


Assuntos
Encefalopatias , Circulação Cerebrovascular , Humanos , Imageamento por Ressonância Magnética/métodos , Angiografia , Cabeça , Encéfalo/diagnóstico por imagem , Encéfalo/irrigação sanguínea , Mapeamento Encefálico
9.
Sci Rep ; 14(1): 7322, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538842

RESUMO

Dynamic susceptibility contrast (DSC) MRI plays a pivotal role in the accurate diagnosis and prognosis of several neurovascular diseases, but is limited by its reliance on gadolinium, an intravascularly injected chelated metal. Here, we determined the feasibility of measuring perfusion using a DSC analysis of breath-hold-induced gradient-echo-MRI signal changes. We acquired data at both 3 T and 7 T from ten healthy participants who engaged in eight consecutive breath-holds. By pairing a novel arterial input function strategy with a standard DSC MRI analysis, we measured the cerebral blood volume, flow, and transit delay, and found values to agree with those documented in the literature using gadolinium. We also observed voxel-wise agreement between breath-hold and arterial spin labeling measures of cerebral blood flow. Breath-holding resulted in significantly higher contrast-to-noise (6.2 at 3 T vs. 8.5 at 7 T) and gray matter-to-white matter contrast at higher field strength. Finally, using a simulation framework to assess the effect of dynamic vasodilation on perfusion estimation, we found global perfusion underestimation of 20-40%. For the first time, we have assessed the feasibility of and limitations associated with using breath-holds for perfusion estimation with DSC. We hope that the methods and results presented in this study will help pave the way toward contrast-free perfusion imaging, in both basic and clinical research.


Assuntos
Meios de Contraste , Gadolínio , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/irrigação sanguínea , Perfusão , Circulação Cerebrovascular
10.
Headache ; 64(3): 276-284, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38429974

RESUMO

OBJECTIVE: This study aimed to compare cerebrovascular reactivity between patients with migraine and controls using state-of-the-art magnetic resonance imaging (MRI) techniques. BACKGROUND: Migraine is associated with an increased risk of cerebrovascular disease, but the underlying mechanisms are still not fully understood. Impaired cerebrovascular reactivity has been proposed as a link. Previous studies have evaluated cerebrovascular reactivity with different methodologies and results are conflicting. METHODS: In this single-center, observational, case-control study, we included 31 interictal patients with migraine without aura (aged 19-66 years, 17 females) and 31 controls (aged 22-64 years, 18 females) with no history of vascular disease. Global and regional cerebrovascular reactivities were assessed with a dual-echo arterial spin labeling (ASL) 3.0 T MRI scan of the brain which measured the change in cerebral blood flow (CBF) and BOLD (blood oxygen level dependent) signal to inhalation of 5% carbon dioxide. RESULTS: When comparing patients with migraine to controls, cerebrovascular reactivity values were similar between the groups, including mean gray matter CBF-based cerebrovascular reactivity (3.2 ± 0.9 vs 3.4 ± 1% ΔCBF/mmHg CO2 ; p = 0.527), mean gray matter BOLD-based cerebrovascular reactivity (0.18 ± 0.04 vs 0.18 ± 0.04% ΔBOLD/mmHg CO2 ; p = 0.587), and mean white matter BOLD-based cerebrovascular reactivity (0.08 ± 0.03 vs 0.08 ± 0.02% ΔBOLD/mmHg CO2 ; p = 0.621).There was no association of cerebrovascular reactivity with monthly migraine days or migraine disease duration (all analyses p > 0.05). CONCLUSION: Cerebrovascular reactivity to carbon dioxide seems to be preserved in patients with migraine without aura.


Assuntos
Epilepsia , Enxaqueca sem Aura , Feminino , Humanos , Encéfalo/irrigação sanguínea , Dióxido de Carbono , Estudos de Casos e Controles , Circulação Cerebrovascular , Hipercapnia/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Masculino , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso
11.
Am J Physiol Heart Circ Physiol ; 326(5): H1291-H1303, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38517228

RESUMO

Increasing evidence indicates the role of mitochondrial and vascular dysfunction in aging and aging-associated pathologies; however, the exact mechanisms and chronological processes remain enigmatic. High-energy demand organs, such as the brain, depend on the health of their mitochondria and vasculature for the maintenance of normal functions, therefore representing vulnerable targets for aging. This methodology article describes an analysis pipeline for three-dimensional (3-D) mitochondria-associated signal geometry of two-photon image stacks of brain vasculature. The analysis methods allow the quantification of mitochondria-associated signals obtained in real time in their physiological environment. In addition, signal geometry results will allow the extrapolation of fission and fusion events under normal conditions, during aging, or in the presence of different pathological conditions, therefore contributing to our understanding of the role mitochondria play in a variety of aging-associated diseases with vascular etiology.NEW & NOTEWORTHY Analysis pipeline for 3-D mitochondria-associated signal geometry of two-photon image stacks of brain vasculature.


Assuntos
Imageamento Tridimensional , Mitocôndrias , Mitocôndrias/metabolismo , Animais , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Células Endoteliais/metabolismo , Dinâmica Mitocondrial , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Camundongos , Envelhecimento/metabolismo
12.
Neuroradiology ; 66(5): 749-759, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38498208

RESUMO

PURPOSE: CT perfusion of the brain is a powerful tool in stroke imaging, though the radiation dose is rather high. Several strategies for dose reduction have been proposed, including increasing the intervals between the dynamic scans. We determined the impact of temporal resolution on perfusion metrics, therapy decision, and radiation dose reduction in brain CT perfusion from a large dataset of patients with suspected stroke. METHODS: We retrospectively included 3555 perfusion scans from our clinical routine dataset. All cases were processed using the perfusion software VEOcore with a standard sampling of 1.5 s, as well as simulated reduced temporal resolution of 3.0, 4.5, and 6.0 s by leaving out respective time points. The resulting perfusion maps and calculated volumes of infarct core and mismatch were compared quantitatively. Finally, hypothetical decisions for mechanical thrombectomy following the DEFUSE-3 criteria were compared. RESULTS: The agreement between calculated volumes for core (ICC = 0.99, 0.99, and 0.98) and hypoperfusion (ICC = 0.99, 0.99, and 0.97) was excellent for all temporal sampling schemes. Of the 1226 cases with vascular occlusion, 14 (1%) for 3.0 s sampling, 23 (2%) for 4.5 s sampling, and 63 (5%) for 6.0 s sampling would have been treated differently if the DEFUSE-3 criteria had been applied. Reduction of temporal resolution to 3.0 s, 4.5 s, and 6.0 s reduced the radiation dose by a factor of 2, 3, or 4. CONCLUSION: Reducing the temporal sampling of brain perfusion CT has only a minor impact on image quality and treatment decision, but significantly reduces the radiation dose to that of standard non-contrast CT.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Humanos , Estudos Retrospectivos , Redução da Medicação , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/terapia , Encéfalo/diagnóstico por imagem , Encéfalo/irrigação sanguínea , Tomografia Computadorizada por Raios X/métodos , Isquemia Encefálica/terapia , Perfusão , Imagem de Perfusão/métodos
13.
Arterioscler Thromb Vasc Biol ; 44(4): 915-929, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38357819

RESUMO

BACKGROUND: Until now, the analysis of microvascular networks in the reperfused ischemic brain has been limited due to tissue transparency challenges. METHODS: Using light sheet microscopy, we assessed microvascular network remodeling in the striatum from 3 hours to 56 days post-ischemia in 2 mouse models of transient middle cerebral artery occlusion lasting 20 or 40 minutes, resulting in mild ischemic brain injury or brain infarction, respectively. We also examined the effect of a clinically applicable S1P (sphingosine-1-phosphate) analog, FTY720 (fingolimod), on microvascular network remodeling. RESULTS: Over 56 days, we observed progressive microvascular degeneration in the reperfused striatum, that is, the lesion core, which was followed by robust angiogenesis after mild ischemic injury induced by 20-minute middle cerebral artery occlusion. However, more severe ischemic injury elicited by 40-minute middle cerebral artery occlusion resulted in incomplete microvascular remodeling. In both cases, microvascular networks did not return to their preischemic state but displayed a chronically altered pattern characterized by higher branching point density, shorter branches, higher unconnected branch density, and lower tortuosity, indicating enhanced network connectivity. FTY720 effectively increased microvascular length density, branching point density, and volume density in both models, indicating an angiogenic effect of this drug. CONCLUSIONS: Utilizing light sheet microscopy together with automated image analysis, we characterized microvascular remodeling in the ischemic lesion core in unprecedented detail. This technology will significantly advance our understanding of microvascular restorative processes and pave the way for novel treatment developments in the stroke field.


Assuntos
Isquemia Encefálica , Cloridrato de Fingolimode , Camundongos , Animais , Cloridrato de Fingolimode/farmacologia , Cloridrato de Fingolimode/uso terapêutico , Infarto da Artéria Cerebral Média/patologia , Microscopia , Encéfalo/irrigação sanguínea , Microvasos/patologia , Modelos Animais de Doenças
15.
Nature ; 627(8002): 165-173, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38326613

RESUMO

The arachnoid barrier delineates the border between the central nervous system and dura mater. Although the arachnoid barrier creates a partition, communication between the central nervous system and the dura mater is crucial for waste clearance and immune surveillance1,2. How the arachnoid barrier balances separation and communication is poorly understood. Here, using transcriptomic data, we developed transgenic mice to examine specific anatomical structures that function as routes across the arachnoid barrier. Bridging veins create discontinuities where they cross the arachnoid barrier, forming structures that we termed arachnoid cuff exit (ACE) points. The openings that ACE points create allow the exchange of fluids and molecules between the subarachnoid space and the dura, enabling the drainage of cerebrospinal fluid and limited entry of molecules from the dura to the subarachnoid space. In healthy human volunteers, magnetic resonance imaging tracers transit along bridging veins in a similar manner to access the subarachnoid space. Notably, in neuroinflammatory conditions such as experimental autoimmune encephalomyelitis, ACE points also enable cellular trafficking, representing a route for immune cells to directly enter the subarachnoid space from the dura mater. Collectively, our results indicate that ACE points are a critical part of the anatomy of neuroimmune communication in both mice and humans that link the central nervous system with the dura and its immunological diversity and waste clearance systems.


Assuntos
Aracnoide-Máter , Encéfalo , Dura-Máter , Animais , Humanos , Camundongos , Aracnoide-Máter/anatomia & histologia , Aracnoide-Máter/irrigação sanguínea , Aracnoide-Máter/imunologia , Aracnoide-Máter/metabolismo , Transporte Biológico , Encéfalo/anatomia & histologia , Encéfalo/irrigação sanguínea , Encéfalo/imunologia , Encéfalo/metabolismo , Dura-Máter/anatomia & histologia , Dura-Máter/irrigação sanguínea , Dura-Máter/imunologia , Dura-Máter/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Perfilação da Expressão Gênica , Imageamento por Ressonância Magnética , Camundongos Transgênicos , Espaço Subaracnóideo/anatomia & histologia , Espaço Subaracnóideo/irrigação sanguínea , Espaço Subaracnóideo/imunologia , Espaço Subaracnóideo/metabolismo , Líquido Cefalorraquidiano/metabolismo , Veias/metabolismo
17.
J Cereb Blood Flow Metab ; 44(5): 680-688, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38420777

RESUMO

The accumulation of the microtubule-associated tau protein in and around blood vessels contributes to brain microvascular dysfunction through mechanisms that are incompletely understood. Delivery of nutrients to active neurons in the brain relies on capillary calcium (Ca2+) signals to direct blood flow. The initiation and amplification of endothelial cell Ca2+ signals require an intact microtubule cytoskeleton. Since tau accumulation in endothelial cells disrupts native microtubule stability, we reasoned that tau-induced microtubule destabilization would impair endothelial Ca2+ signaling. We tested the hypothesis that tau disrupts the regulation of local cerebral blood flow by reducing endothelial cell Ca2+ signals and endothelial-dependent vasodilation. We used a pathogenic soluble tau peptide (T-peptide) model of tau aggregation and mice with genetically encoded endothelial Ca2+ sensors to measure cerebrovascular endothelial responses to tau exposure. T-peptide significantly attenuated endothelial Ca2+ activity and cortical capillary blood flow in vivo. Further, T-peptide application constricted pressurized cerebral arteries and inhibited endothelium-dependent vasodilation. This study demonstrates that pathogenic tau alters cerebrovascular function through direct attenuation of endothelial Ca2+ signaling and endothelium-dependent vasodilation.


Assuntos
Sinalização do Cálcio , Circulação Cerebrovascular , Microvasos , Vasodilatação , Proteínas tau , Animais , Vasodilatação/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Camundongos , Proteínas tau/metabolismo , Microvasos/metabolismo , Microvasos/efeitos dos fármacos , Circulação Cerebrovascular/efeitos dos fármacos , Circulação Cerebrovascular/fisiologia , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Masculino , Endotélio Vascular/metabolismo , Endotélio Vascular/efeitos dos fármacos , Cálcio/metabolismo
18.
Alzheimers Dement ; 20(4): 2497-2507, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38332543

RESUMO

INTRODUCTION: We tested the association of brain artery diameters with dementia and stroke risk in three distinct population-based studies using conventional T2-weighted brain magnetic resonance imaging (MRI) images. METHODS: We included 8420 adults > 40 years old from three longitudinal population-based studies with brain MRI scans. We estimated and meta-analyzed the hazard ratios (HRs) of the brain and carotids and basilar diameters associated with dementia and stroke. RESULT: Overall and carotid artery diameters > 95th percentile increased the risk for dementia by 1.74 (95% confidence interval [CI], 1.13-2.68) and 1.48 (95% CI, 1.12-1.96) fold, respectively. For stroke, meta-analyses yielded HRs of 1.59 (95% CI, 1.04-2.42) for overall arteries and 2.11 (95% CI, 1.45-3.08) for basilar artery diameters > 95th percentile. DISCUSSION: Individuals with dilated brain arteries are at higher risk for dementia and stroke, across distinct populations. Our findings underline the potential value of T2-weighted brain MRI-based brain diameter assessment in estimating the risk of dementia and stroke.


Assuntos
Demência , Acidente Vascular Cerebral , Adulto , Humanos , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/complicações , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Encéfalo/irrigação sanguínea , Artéria Basilar , Demência/diagnóstico por imagem , Demência/epidemiologia , Demência/complicações , Fatores de Risco
19.
Sci Adv ; 10(9): eadm7605, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38416820

RESUMO

Cerebral perfusion is critical for the early detection of neurological diseases and for effectively monitoring disease progression and treatment responses. Mouse models are widely used in brain research, often under anesthesia, which can affect vascular physiology. However, the impact of anesthesia on regional cerebral blood volume and flow in mice has not been thoroughly investigated. In this study, we have developed a whole-brain perfusion MRI approach by using a 5-second nitrogen gas stimulus under inhalational anesthetics to induce transient BOLD dynamic susceptibility contrast (DSC). This method proved to be highly sensitive, repeatable within each imaging session, and across four weekly sessions. Relative cerebral blood volumes measured by BOLD DSC agree well with those by contrast agents. Quantitative cerebral blood volume and flow metrics were successfully measured in mice under dexmedetomidine and various isoflurane doses using both total vasculature-sensitive gradient-echo and microvasculature-sensitive spin-echo BOLD MRI. Dexmedetomidine reduces cerebral perfusion, while isoflurane increases cerebral perfusion in a dose-dependent manner.


Assuntos
Anestesia , Dexmedetomidina , Isoflurano , Animais , Camundongos , Isoflurano/farmacologia , Dexmedetomidina/farmacologia , Imageamento por Ressonância Magnética/métodos , Hipóxia , Encéfalo/irrigação sanguínea , Perfusão , Circulação Cerebrovascular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...